Treillis et bases des groupes de Coxeter
نویسندگان
چکیده
A Dominique Foata, pionnier de la combinatoirè a qui elle doit tant 1. Introduction. — Le présent travail est une contributionà l'´ etude de l'ordre fort (dit aussi de Bruhat) dans un groupe de Coxeter fini W. Les définitions et propriétés relatives aux treillis, aux ensembles or-donnés, aux bases et aux treillis enveloppants, &c. sont rassemblées de manì ere minimale dans la section 2, les preuves et quelques exemplesétant présentés en annexe, ´ egalement de façon minimale. La base B d'un ensemble ordonné fini (X, ≤) est le plus petit sous-ensemble tel que la comparaison de deuxéléments pour l'ordre ≤ soit donné par l'ordre d'inclusion des projections (dans 2 B) de ceséléments sur la base. La section 3 décrit les rapports entre les ordres faibles et fort sur les groupes de Coxeter, en les reliantà diverses algèbres de Hecke dégénérées. La base (pour l'ordre fort) est contenue dans l'ensemble de ce que nous appelons les bigrassmanniennes (´ eléments w ∈ W tels qu'il existe une seule paire de générateurs σ, σ tels que (σµ) < <(µ), (µσ) < <(µ)).
منابع مشابه
Explicit Presentations for the Dual Braid Monoids
Birman, Ko & Lee have introduced a new monoid Bn—with an explicit presentation— whose group of fractions is the n-strand braid group Bn. Building on a new approach by Digne, Michel and himself, Bessis has defined a dual braid monoid for every finite Coxeter type Artin-Tits group extending the type A case. Here, we give an explicit presentation for this dual braid monoid in the case of types B a...
متن کاملDécompositions de Groupes par Produit Direct et Groupes de Coxeter
We provide examples of groups which are indecomposable by direct product, and more generally which are uniquely decomposable as direct products of indecomposable groups. Examples include Coxeter groups, for which we give an alternative approach to recent results of L. Paris. For a finitely generated linear group Γ, we establish an upper bound on the number of factors of which Γ can be the direc...
متن کاملFinite pseudocomplemented lattices and 'permutoedre'
We study finite pseudocomplemented lattices and especially those that are also complemented. With regard to the classical results on arbitrary or distributive pseudocomplemented lattices the finiteness property allows to bring significant more precise details on the structural properties of such lattices. These results can especially be applied to the lattices defined by the "weak Bruhat order"...
متن کاملOn the Topology of the Cambrian
For an arbitrary Coxeter group W , David Speyer and Nathan Reading defined Cambrian semilattices Cγ as certain sub-semilattices of the weak order on W . In this article, we define an edge-labeling using the realization of Cambrian semilattices in terms of γ-sortable elements, and show that this is an EL-labeling for every closed interval of Cγ . In addition, we use our labeling to show that eve...
متن کاملKazhdan–Lusztig polynomials of boolean elements
We give closed combinatorial product formulas for Kazhdan–Lusztig poynomials and their parabolic analogue of type q in the case of boolean elements, introduced in [M. Marietti, Boolean elements in Kazhdan–Lusztig theory, J. Algebra 295 (2006)], in Coxeter groups whose Coxeter graph is a tree. Such formulas involve Catalan numbers and use a combinatorial interpretation of the Coxeter graph of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 3 شماره
صفحات -
تاریخ انتشار 1996